Nature-based Solutions on existing infrastructures for resilient Water Management in the Mediterranean

Bozcaada island, Turkey

FWC-NbS 4: Aquifer complex (Type B+C)

Location:  Bozcaada, Turkey

Climate: Hot-summer Mediterranean climate

Area: 37.6 Ha

Objectives: Improve storage of groundwater in aquifers and distribution system efficiency

Challenges: CC impacts; water quality; imbalance in water demand due to tourism; droughts and water scarcity; salinity; erosion; use of irrigation water; soil fertility – yield losses

Description: Tenedos is an island in the northern Aegean Sea of great geographical and geopolitical importance. There is no major river or rich vegetation, the small number of aquatic and paludal plants is a consequence of the lack of water. Drinking water is provided through a pipeline from the mainland and a small amount is used for agriculture. Traditional water-saving measures are used for agriculture irrigation. Wells are also used to extract groundwater for irrigation, but it is not a very common practice because of seawater intrusion in the aquifer. Large differences in winter and summer population cause severe water resource stress. Investments have been promoted to improve infrastructure. 

  • Agriculture: The major land use is vineyards and almonds. There are also small-scale agricultural areas, orchards, and vegetable gardens.
  • Communities: The main economic activities are tourism, wine production, and fishing.
  • Water policies: Directive on the Management of Water Resources for Human Consumption.
  • Data: There are geological and hydrogeological data and measurements of treated wastewater and water and land use.


MAR: Natural Infiltration Techniques + additional water sources

To implement soil natural infiltration techniques, the dominant recharge mechanism is determined to develop a suitable approach to infiltrate additional water (roof water, treated wastewater, extreme runoff from the natural drainage system, etc.) to the aquifer.
A pilot-scale recharge unit will be constructed: Gradoni terracing techniques will be implemented by creating step-like structures on sloped terrains; cultivate groundcover plants will be introduced; and measures to increase soil’s water retention capacity will be applied.

MAR: Seawater Protection – recharge wells

Recharge wells will be installed at sites with saltwater intrusion sites on the island. To implement recharge wells, a modflow-seawat model on Groundwater Modelling System (GMS) platform will be developed: a conceptual model, numerical salt water intrusion model and a scenario analysis. Also, it will be analysed the existing wells and new monitoring wells will be drilled. Groundwater levels, groundwater quality and calibration data will be monitored.

MAR: Groundwater storage system complementation

The aim is to establish an underground aquifer, working on groundwater recharge by drilling a well. Surface water flowing in the stream beds will be collected to feed the groundwater. The surface will be covered with plants to provide surface water filtration and prevent the well from being affected by sedimentation. Planting works will also reduce stream flooding.

Soil Management: Conservation Agriculture

CA techniques will be applied, focus on the development of a permanent soil cover, minimum soil disturbance, and diversification of plant species. In the Case Study area, carefully selected fertilizers will be used to support soil health and minimize environmental impacts; water management practices will be implemented to conserve and optimally use water resources; and various plant species will be introduced and the development of beneficial microorganisms in the soil will be encouraged.
The landscape of the implementation area is predominantly covered with fig trees, specifically in their early growth stages of 3-4 years. These young fig trees, while resilient, require specific care and attention to ensure their healthy growth and productivity. The sloped nature of the terrain can lead to issues such as soil erosion, water runoff, and uneven water distribution. Implementing CA and effective soil management practices in this setting is crucial to address these challenges, promote sustainable agriculture, and ensure the long-term health and productivity of the fig orchard.

Soil Management: Climate-resilient Agriculture

Climate-resilient agriculture will be applied in an agriculture area of Case Study 4, using treated wastewater and greywater for irrigation in Paulownia cultivation. A symbiotic relation is created, promoting a closed-loop system and fostering the conservation of water resources and minimizing waste. As Paulownia thrives, it helps in restoring soil health and enhancing biodiversity, which in turn can mitigate the adverse impacts of climate fluctuations, setting a cornerstone for an ecologically balanced future.

Improvement of distribution system efficiency: monitoring and plan

The data collected by the Supervisory Control And Data Acquisition (SCADA) system is used to generate reports and analysis to assist in decision making, predictive maintenance and process optimisation of Bozcaada’s existing water distribution system.

Improvement of distribution system efficiency: Water - 4.0

A smart irrigation system is designed to monitor the moisture of soil and determine the precise amount of irrigation water and plant water consumption using Artificial Intelligence (AI).
The system can monitor capillarity water in soil with real-time data and automatically manage the irrigation system with artificial intelligence. Thus, an AI irrigation system using ICT on a pilot scale will be constructed. AI algorithms will be used to analyze soil moisture data and capillary water movements in the soil profile (root zone), and analyzing them in real-time for maintaining optimal root zone moisture levels. Also, and irrigation and nutrient management will be developed supported by AI algorithms.
As a result of the application, the amount and movement of water in the soil will be accurately determined, allowing for more reliable water budget calculations.